
1

Development Individual Project

Project Overview

The project implements a school grading system with user-role-based access.

Depending on their roles, users can create, view, update, and delete records such as

user accounts, study groups, marks, and messages.

The application includes server and client components. It runs in either secure or non-

secure mode. A malicious client is also provided to test the system’s security features.

Running the Application

1. Ensure Python 3 is present in the system (the application was tested with Python

3.12).

2. In the project root, execute main.py:

This command will set up the server in the secure mode and run the client interface. To

disable security, add --non_secure to the list of arguments. To run the malicious client,

use --malicious. To see all keys, run the application with the --help key.

Server Application

The server application initialises the HTTP server, data repositories, and the

ActionFactory. The factory acts as a router: it receives requests, generates specific

Action implementations, and executes them. Using the Factory design pattern helps

organize and manage supported actions, separates HTTP request handling from

business logic, and decouples the server logic from action implementations, providing a

python main.py --server --client

2

single entry point for the supported actions (Ellis, Stylos and Myers, 2007). The core

architecture of the application is shown in the UML class diagram in Figure 1. The

server provides a Representational State Transfer Application Programming Interface

(REST API) that is uniform, cacheable, and stateless (Fielding, 2000; IBM, 2025).

Figure 1. UML Class diagram for the application core

Core Infrastructure

Server

host: String
port: int
secure_mode: bool
rate_limiting: bool
server_socket: HTTPServer
running: bool
audit_log_repository: AuditLogRepository
class_group_repository: ClassGroupRepository
marks_repository: MarksRepository
message_repository: MessageRepository
subject_repository: SubjectRepository
user_repository: UserRepository
security_manager: SecurityManager
session_manager: SessionManager
action_factory: ActionFactory

create_handler_class(): type
start(setup: Callable): void
stop(): void

HTTPConnectionHandler

server_version: String
connection_timeout: float
app_server: Server
action_factory: ActionFactory
security_manager: SecurityManager

log_message(format, *args): void
setup(): void
finish(): void
do_GET(): void
do_POST(): void
do_PUT(): void
do_DELETE(): void
process_request(method: Method): void
parse_payload(data: bytes): Dict
respond(result: Result): void

Method

GET
POST
PUT
DELETE

Request

method: Method
endpoint: String
payload: Map<String, Object>
session_id: String
user: User

Result

status: int
message: String
data: Map<String, Object>

public_view(): Map<String, Object>

ActionFactory

actions: Map<ActionCallerId, Callable>
server: Server

create_action(request: Request): Action
is_valid_endpoint(request: Request): bool
register_action(method: Method, endpoint: String, action_provider: Callable): void

ActionCallerId

method: Method
endpoint: Path

matches(request: Request): bool

Path

pattern: String
param_names: List<String>

matches(path: String): bool
params(path: String): Map<String, String>

ActionData

server: Server
session_id: String
user: User
payload: Map<String, Object>
url_params: Map<String, Object>

Action

action_data: ActionData

execute(): Result
perform_action(): Result
write_log(result: Result, success: bool): void

Data Repositories
AuditLogRepositorySecurityManagerSessionManager

User

creates uses

createsuses

uses uses

uses

returns

uses

uses

uses

uses

references

references

logs to

3

The specific actions exposed via API endpoints implement Create, Read, Update, and

Delete (CRUD) functionality for the repositories containing users, marks, subjects, etc.

(CrowdStrike, 2022) Although a relational database would be more suitable for a

production application, this implementation stores data in JSON files when the

application shuts down. This choice is supported by the standard Python library’s built-in

handling of this format and allows to avoid overhead of managing a database engine

(Python Software Foundation, 2025b).

Server Testing

The server_tests module implements a comprehensive testing strategy using

Python’s standard unittest library (Python Software Foundation, 2025c). It includes unit

and integration tests, with the mock library used to emulate external dependencies and

verify class interactions (Python Software Foundation, 2025d).

The server tests are run with the following command:

Expected output:

Client Application

A command-line interface (CLI) client is implemented in the client module. The client

application supports caching to improve data display and allows users to log in to the

python -m unittest discover server_tests

[...]
--
Ran 241 tests in 26.656s
OK

4

system and run commands associated with the different endpoints on the server, as

displayed on the Figure 2.

Figure 2. Using the client application

Client Testing

The client test suite includes integration tests to ensure correct request execution and

processing. The tests are run using the following command:

Expected output:

python -m unittest discover client_tests

5

Security Overview

The system implements login functionality to authenticate users and partially complies

to the General Data Protection Regulation (GDPR), specifically to the Articles 25, 30,

and 32: access to personal data is restricted by permissions; unauthenticated and

unauthorised access is blocked. For example, students can only view their own marks,

and teachers and students can only see the messages they sent or received; otherwise,

HTTP status 403 Forbidden is returned. The server logs user actions, and cryptographic

software is used to protect connections and passwords. (‘Regulation (EU) 2016/679 of

the European Parliament and of the Council (General Data Protection Regulation)’,

2016)

A dedicated SecurityManager is set up as the entry point for the different parts of the

application to provide security-related functionality. The server can run in two modes:

with security features enabled or disabled. The malicious_client module includes a

client that performs attacks of the server (Figure 3).

[...]
--
Ran 16 tests in 6.267s
OK

6

Figure 3. Running attacks using the specialised client

A dedicated test suite in malicious_client_tests automatically runs attack scenarios

on secure and non-secure server instances. The test suite is executes using the

following command:

Expected output:

python -m unittest discover malicious_client_tests

7

HTTP Traffic Encryption

In secure mode, the HTTP server will be set up with Transport Level Security (TLS)

support, the industry standard for protecting HTTP connections. It encrypts the

transported data and prevents Man in the Middle (MiTM) attacks.

In non-secure mode, the requests are sent over HTTP without encryption and can be

read by a third party. Figure 4 demonstrates a login request intercepted using

Wireshark, a network protocol analyser used to capture local traffic (Wireshark

Foundation, no date). In the Open Worldwide Application Security Project (OWASP)

Top 10 classification, this would classify as A02:2021 “Cryptographic Failures” (OWASP

Top 10 Team, 2021a). Sending vulnerable information over plain HTTP is also

categorised in the Common Weakness Enumeration (CWE) catalog under CWE-319

“Cleartext Transmission of Sensitive Information” (The MITRE Corporation, no date d).

[...]
--
Ran 6 tests in 25.133s
OK

8

Figure 4. Intercepting user credentials using Wireshark

Rate Limiting and Session Management

The server records recent requests and enforces rate limiting to prevent Denial of

Service (DoS) attacks and Brute Force attacks. After several failed logins, further

requests are denied. This prevents the attacks categorised as A07:2021 “Identification

and Authentication Failures” and CWE-307 “Improper Restriction of Excessive

Authentication Attempts” (OWASP Top 10 Team, 2021c; The MITRE Corporation, no

date b).

9

If a session ID is leaked, it cannot be used indefinitely, as sessions expire after a

timeout, preventing CWE-613 “Insufficient Session Expiration” (The MITRE Corporation,

no date g).

The malicious client simulates a Brute Force attack by trying commonly used passwords

revealed in the research of the vendor Nord Security (2024). Figure 5 demonstrates that

when rate limiting is enabled on the server, the attack fails, and a session ID is not

acquired.

Figure 5. Execution of a Brute Force attack with secure (left) and non-secure (right)

server

Connection Timeouts

The Python HTTP server processes requests sequentially in a single thread, making it

susceptible to Slowloris-style DoS attacks. This type of attack involves sending partial

requests to the server and never completing them, which can block the processing of

further requests (Damon et al., 2012). This is categorised as CWE-400 “Uncontrolled

Resource Consumption” (The MITRE Corporation, no date e).

To mitigate such attacks, a lower connection timeout can be set so connections close

sooner (Shorey et al., 2018). As the application does not send or receive large amounts

10

of data, it will not affect the server’s functionality. When run in secure mode, the attack

only causes longer response times, not full server unavailability.

Figure 6 demonstrates that in secure mode the server keeps responding to a legitimate

user during the attack. In non-secure mode, a connection cannot be established.

Figure 6. Execution of a Slowloris-style DoS attack with secure (left) and non-secure

(right) server

Password Hashing

Stored passwords are hashed using the bcrypt algorithm, which uses random salt and

requires significant processing power to reverse. This prevents malicious actors from

using passwords or Rainbow tables — lists of previously calculated password hashes

— in case the database is leaked (Skanda, Srivatsa and Premananda, 2022). The

bcrypt algorithm is trusted by security-oriented software vendors such as Proton (Proton

AG, 2024). An excerpt demonstrating the hashed passwords in the user data repository

is below:

11

In non-secure mode, passwords are stored in plain text, leading to CWE-312 “Cleartext

Storage of Sensitive Information” (The MITRE Corporation, no date c). In case a

malicious actor gains access to the storage, all user passwords are exposed:

Preventing Injection Attacks

Unlike the original design, this server implementation does not deserialize requests

directly into Action objects. Instead, request content is passed as an argument during

action execution. The standard Python library’s json.loads() function is used to

process incoming payload. This function is considered safe, as it will not execute

arbitrary code. If the input is not valid JSON, it raises an error (Python Software

Foundation, 2025b). However, a large JSON file could overwhelm the application and

consume excessive resources.

In contrast, non-secure mode uses Python’s eval() function to create objects from

JSON strings, but it will also execute any arbitrary code (Python Software Foundation,

2025a). As part of an injection attack, the malicious client sends a Python script that

{
 "user_id": 1,
 "username": "admin",
 "password_hash":
"$2b$12$H48k9so0pBRoOctKWpiYqu32TWNLgShu4x34vA97zzgRjt1qn0uVG",
 "role": "ADMIN"
}

{
 "user_id": 1,
 "username": "admin",
 "password ": "admin",
 "role": "ADMIN"
}

12

traverses server directories, extracts user credentials, and sends them to a remote

server controlled by an attacker. Similarly, other configuration files or environment

variables with access keys may be exposed.

This is described as A03:2021 “Injection”, CWE-94 “Improper Control of Generation of

Code” (application constructs code of unvalidated input), CWE-502 “Deserialization of

Untrusted Data” (input is deserialised without any pre-processing) (OWASP Top 10

Team, 2021b; The MITRE Corporation, no date a, no date f).

Figure 7 demonstrates that the script is not executed in the secure mode and no data is

received. In non-secure mode, the script successfully extracts the sensitive information

from the server.

Figure 7. Execution of an injection attack with secure (left) and non-secure (right) server

Development Process and Reflection

The initial design offered a solid outline of the server application but lacked some detail.

It was necessary to expand object states adding necessary fields and introducing

methods to facilitate communication between class objects.

13

Some security features differ from the original design, but the final software reflects

equivalent design considerations. Additionally, the requirement to run the server in non-

secure mode encouraged research into attack vectors and their implementation, as well

as a deeper understanding of proper security setup in networked software.

Implementing server tests streamlined development, ensured endpoint consistency, and

prevented regressions. It also accelerated client development by ensuring API stability

and providing request examples used in the client.

Using testing frameworks to demonstrate attack effects (or lack thereof) streamlined the

development of malicious scripts and removed the need for manual verification.

References

CrowdStrike (2022) What Is CRUD? Create, Read, Update, and Delete,

CrowdStrike.com. Available at: https://www.crowdstrike.com/en-us/cybersecurity-

101/observability/crud/ (Accessed: 13 July 2025).

Damon, E. et al. (2012) ‘Hands-on denial of service lab exercises using SlowLoris and

RUDY’, in Proceedings of the 2012 Information Security Curriculum Development

Conference. New York, NY, USA: Association for Computing Machinery

(InfoSecCD ’12), pp. 21–29. Available at: https://doi.org/10.1145/2390317.2390321.

Ellis, B., Stylos, J. and Myers, B. (2007) ‘The Factory Pattern in API Design: A Usability

Evaluation’, in 29th International Conference on Software Engineering (ICSE’07). 29th

International Conference on Software Engineering (ICSE’07), pp. 302–312. Available at:

https://doi.org/10.1109/ICSE.2007.85.

Fielding, R.T. (2000) Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation. University of California. Available at:

14

https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm (Accessed: 1 July

2025).

IBM (2025) What Is a REST API (RESTful API)? Available at:

https://www.ibm.com/think/topics/rest-apis (Accessed: 1 July 2025).

Nord Security (2024) Top 200 Most Common Passwords, NordPass. Available at:

https://nordpass.com/most-common-passwords-list/ (Accessed: 13 July 2025).

OWASP Top 10 Team (2021a) A02 Cryptographic Failures - OWASP Top 10:2021.

Available at: https://owasp.org/Top10/A02_2021-Cryptographic_Failures/ (Accessed: 13

July 2025).

OWASP Top 10 Team (2021b) A03 Injection - OWASP Top 10:2021. Available at:

https://owasp.org/Top10/A03_2021-Injection/ (Accessed: 13 July 2025).

OWASP Top 10 Team (2021c) A07 Identification and Authentication Failures - OWASP

Top 10:2021. Available at: https://owasp.org/Top10/A07_2021-

Identification_and_Authentication_Failures/ (Accessed: 13 July 2025).

Proton AG (2024) What is password hashing and salting?, Proton. Available at:

https://proton.me/blog/password-hashing-salting (Accessed: 13 July 2025).

Python Software Foundation (2025a) Built-in Functions, Python documentation.

Available at: https://docs.python.org/3/library/functions.html (Accessed: 13 July 2025).

Python Software Foundation (2025b) json — JSON encoder and decoder, Python

documentation. Available at: https://docs.python.org/3/library/json.html (Accessed: 13

July 2025).

15

Python Software Foundation (2025c) unittest — Unit testing framework, Python

documentation. Available at: https://docs.python.org/3/library/unittest.html (Accessed:

13 July 2025).

Python Software Foundation (2025d) unittest.mock — mock object library, Python

documentation. Available at: https://docs.python.org/3/library/unittest.mock.html

(Accessed: 13 July 2025).

‘Regulation (EU) 2016/679 of the European Parliament and of the Council (General

Data Protection Regulation)’ (2016). Official Journal of the European Union. Available

at: https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng (Accessed: 19 January 2025).

Shorey, T. et al. (2018) ‘Performance Comparison and Analysis of Slowloris, GoldenEye

and Xerxes DDoS Attack Tools’, in 2018 International Conference on Advances in

Computing, Communications and Informatics (ICACCI). 2018 International Conference

on Advances in Computing, Communications and Informatics (ICACCI), pp. 318–322.

Available at: https://doi.org/10.1109/ICACCI.2018.8554590.

Skanda, C., Srivatsa, B. and Premananda, B.S. (2022) ‘Secure Hashing using BCrypt

for Cryptographic Applications’, in 2022 IEEE North Karnataka Subsection Flagship

International Conference (NKCon). 2022 IEEE North Karnataka Subsection Flagship

International Conference (NKCon), pp. 1–5. Available at:

https://doi.org/10.1109/NKCon56289.2022.10126956.

The MITRE Corporation (no date a) CWE - CWE-94: Improper Control of Generation of

Code ('Code Injection’) (4.17). Available at: https://cwe.mitre.org/data/definitions/94.html

(Accessed: 13 July 2025).

16

The MITRE Corporation (no date b) CWE - CWE-307: Improper Restriction of

Excessive Authentication Attempts (4.17). Available at:

https://cwe.mitre.org/data/definitions/307.html (Accessed: 13 July 2025).

The MITRE Corporation (no date c) CWE - CWE-312: Cleartext Storage of Sensitive

Information (4.17). Available at: https://cwe.mitre.org/data/definitions/312.html

(Accessed: 13 July 2025).

The MITRE Corporation (no date d) CWE - CWE-319: Cleartext Transmission of

Sensitive Information (4.17). Available at: https://cwe.mitre.org/data/definitions/319.html

(Accessed: 13 July 2025).

The MITRE Corporation (no date e) CWE - CWE-400: Uncontrolled Resource

Consumption (4.17). Available at: https://cwe.mitre.org/data/definitions/400.html

(Accessed: 13 July 2025).

The MITRE Corporation (no date f) CWE - CWE-502: Deserialization of Untrusted Data

(4.17). Available at: https://cwe.mitre.org/data/definitions/502.html (Accessed: 13 July

2025).

The MITRE Corporation (no date g) CWE - CWE-613: Insufficient Session Expiration

(4.17). Available at: https://cwe.mitre.org/data/definitions/613.html (Accessed: 13 July

2025).

Wireshark Foundation (no date) Wireshark, Wireshark. Available at:

https://www.wireshark.org/ (Accessed: 13 July 2025).

