
Database Query Assignment

Introduction

The assignment consists of two parts: database setup and performing queries to

extract required information from the database.

The assignment has been completed using MySQL 9.1.0.

Database setup

First, the database COMPANY1 is created and the USE statement is used to set it as

the default database for all consequent requests.

Create tables

The database contains two tables:

The DEPT table should be set up first, as it is referenced via a foreign key in the EMP

table.

CREATE DATABASE COMPANY1;

USE COMPANY1;

DEPT containing the information about the departments,

EMP with the employees' records.

CREATE TABLE DEPT

(

DEPTNO INT PRIMARY KEY, -- Primary key: Department number

DNAME VARCHAR(50), -- Department name

LOC VARCHAR(50) -- Location of the department

);

CREATE TABLE EMP

(

EMPNO INT PRIMARY KEY, -- Primary key: Employee number

1

af://h1-0
af://h2-1
af://h2-2
af://h3-3

The SAL and COMM fields that contain monetary values are stored as DECIMAL

values. DECIMAL is a precise fixed-point type that does not suffer from the rounding

errors typical for floating-point arithmetic (Brylow, 2019, p. 80; Oracle Corporation, no

date a).

After the tables are set up, they are populated with the data provided in the

assignment.

Query the database

1. List employees based on their salary

List all Employees whose salary is greater than 1,000 but not 2,000. Show the

Employee Name, Department and Salary

The following command joins the records from the EMP and DEPT tables based on

the department number, filters the records based on the salary value, and displays the

required fields:

The returned data is below:

ENAME VARCHAR(50), -- Employee name

JOB VARCHAR(50), -- Job title

MGR INT, -- Manager's employee number

HIREDATE DATE, -- Date of hire

SAL DECIMAL(10, 2), -- Salary

COMM DECIMAL(10, 2), -- Commission

DEPTNO INT, -- Foreign key: Department number

FOREIGN KEY (DEPTNO) REFERENCES DEPT (DEPTNO)

);

SELECT EMP.ENAME, DEPT.DNAME, EMP.SAL

FROM EMP

JOIN DEPT on EMP.DEPTNO = DEPT.DEPTNO

WHERE SAL BETWEEN 1000 AND 2000;

2

af://h2-4
af://h3-5

ENAME DNAME SAL

ALLEN SALES 1600.00

WARD SALES 1250.00

MARTIN SALES 1250.00

TURNER SALES 1500.00

ADAMS RESEARCH 1100.00

MILLER ACCOUNTING 1300.00

Alternatively, it's possible to reduce the dataset before the JOIN operation, which can

improve performance on larger datasets. For this purpose, a subquery can be used to

get the matching employees and select the fields from the resulting derived table:

It is also possible to use a common table expression (CTE) for the same purpose by

invoking a WITH clause. Similarly to derived tables, CTEs allow to pre-fetch data, but

also have multiple advantages: CTEs can be reused multiple times in a query,

referenced in other CTEs and in itself forming a recursive query. A recursive query

can be useful for exploring hierarchical data, such as manager-subordinate relation in

the EMP table.

The solution for the current task involving a CTE:

SELECT FilteredEmp.ENAME, DEPT.DNAME, FilteredEmp.SAL

FROM (SELECT ENAME, SAL, DEPTNO

FROM EMP

WHERE SAL BETWEEN 1000 AND 2000) AS FilteredEmp

INNER JOIN DEPT ON FilteredEmp.DEPTNO = DEPT.DEPTNO;

WITH FilteredEmp AS (SELECT ENAME, SAL, DEPTNO

FROM EMP

WHERE SAL BETWEEN 1000 AND 2000)

3

2. Count employees based on criteria

Count the number of people in department 30 who receive a salary and a

commission.

The command below counts the entries in the EMP table where the SAL and COMM

values are greater than zero.

The result of the query execution is below:

COUNT(*)

3

It is worth noting that there's a record of the employee with EMPNO = 7844 with

COMM value set to 0.00 , which contradicts the premise from the database

description in the assignment: "not all employees receive commission, in which case

the COMM field is set to null" (University of Essex Online, 2024).

EMPNO ENAME JOB ... COMM DEPTNO

7844 TURNER SALESMAN ... 0.00 30

Without domain-specific knowledge, it is unclear if the zero value represents an

operator error or is legitimate and required for the salesman position (other

employees who receive commission are also salesmen).

SELECT F.ENAME, D.DNAME, F.SAL

FROM FilteredEmp F

INNER JOIN DEPT D ON F.DEPTNO = D.DEPTNO;

SELECT COUNT(*)

FROM EMP

WHERE DEPTNO = 30

AND SAL > 0

AND COMM > 0;

4

af://h3-6

In case the employee with commission of zero should be included in the count,

WHERE clause must be formulated as follows: WHERE DEPTNO = 30 AND SAL IS

NOT NULL AND COMM IS NOT NULL .

As an alternative solution, a subquery or a CTE can be used. This query will first filter

the table and return 1 for each matching record. Then the returned values are

counted.

Another option would be to use conditional count and specify the criteria inside the

COUNT function, which can be more explicit and readable.

It is also possible to execute an EXISTS subquery. While unnecessary here, an

EXISTS subquery can be valuable for cross-referencing databases. For each record

in the EMP table, a subquery is executed. If the subquery yields any results, it is

evaluated as TRUE , and the current record is included in the count.

SELECT COUNT(*)

FROM (SELECT 1

FROM EMP

WHERE DEPTNO = 30

AND SAL > 0

AND COMM > 0) AS FilteredEMP;

SELECT COUNT(CASE WHEN DEPTNO = 30 AND SAL > 0 AND COMM > 0 THEN

1 END)

FROM EMP;

SELECT COUNT(*)

FROM EMP E

WHERE EXISTS (SELECT 1

FROM EMP

WHERE DEPTNO = 30

AND EMP.SAL > 0

5

3. Display details for employees who match selection criteria

Find the name and salary of the employees that have a salary greater or equal to

1,000 and live in Dallas.

The query combines the EMP and DEPT tables based on the DEPTNO field. Then, the

dataset is filtered based on the department location and the employee salary.

The result of the query execution is below:

ENAME SAL

JONES 2975.00

SCOTT 3000.00

ADAMS 1100.00

FORD 3000.00

It is possible to rewrite the query with a CTE to find the department located in Dallas

first, then generate the intersection of the resulting DallasDepartments table with

the EMP table, and filter the values based on the employee salary. This allows to

reduce the volume of the dataset and only work with the records of the employees

located in Dallas.

AND EMP.COMM > 0

AND E.EMPNO = EMP.EMPNO);

SELECT EMP.ENAME, EMP.SAL

FROM EMP

JOIN DEPT on EMP.DEPTNO = DEPT.DEPTNO

WHERE DEPT.LOC = 'DALLAS'

AND EMP.SAL >= 1000;

WITH DallasDepartments AS (SELECT DEPT.LOC, DEPT.DEPTNO

from DEPT

6

af://h3-7

4. Find departments without employees

Find all departments that do not have any current employees.

To locate the departments without any employees, LEFT JOIN operation can be

used: it will associate each department record with the records of the employees of

that department. If no matching employee record is found, NULL values are

appended to the resulting row in place of the values from the EMP table. If the NULL

value occurs in the field that is originally not nullable in the EMP table, such as

EMPNO , it's an indicator that no matching record was found.

The result for this query is an empty set. There are employees in each of the three

departments.

To verify that the query works as required, a temporary record can be added to the

DEPT table:

After the record is added, the query above returns the name for the newly added

department, which confirms that the query is well-formed. The record can be deleted

WHERE LOC = 'DALLAS')

SELECT EMP.ENAME, EMP.SAL

FROM EMP

INNER JOIN DallasDepartments on EMP.DEPTNO =

DallasDepartments.DEPTNO

WHERE SAL >= 1000;

SELECT DEPT.DNAME

FROM DEPT

LEFT JOIN EMP ON DEPT.DEPTNO = EMP.DEPTNO

WHERE EMP.EMPNO IS NULL;

INSERT INTO DEPT

VALUE (40, 'TEST DEPT', 'SEATTLE');

7

af://h3-8

after the queries are tested to return the database to its initial state.

DNAME

TEST DEPT

Another option could be to use the NOT EXISTS subquery to cross-reference the

tables. For each row in the DEPT table, a subquery is executed to determine whether

there is an employee referencing the current department, and if there are none, the

row is included in the output. This approach focuses on the filtering criteria and can be

perceived as more explicit. However, its downside is that the subquery is executed for

each row in the DEPT table, which can be ineffective on larger tables.

5. Display aggregate department data

List the department number, the average salary, and the number/count of

employees of each department.

Both AVG and COUNT functions operate on sets of data, and a way to gather a set is

to use the GROUP BY clause. The query below will perform LEFT JOIN of the tables

DEPT and EMP (although with the existing dataset an [INNER] JOIN would suffice,

as there are no departments without employees as proven above) and group the

results based on their DEPTNO value. This allows to execute the aforementioned

functions to perform the calculations. COALESCE() function can be used to avoid

NULL values for average salary in case there are no employee records for the

department. ROUND() function is used to round the monetary values to the closest

1/100th of a currency unit.

SELECT DNAME

FROM DEPT D

WHERE NOT EXISTS (SELECT 1

FROM EMP E

WHERE E.DEPTNO = D.DEPTNO);

8

af://h3-9

The result of the query execution is below:

DEPTNO ROUND(COALESCE(AVG(EMP.SAL), 0), 2) COUNT(EMP.EMPNO)

10 2916.67 3

20 2175.00 5

30 1566.67 6

Alternatively, it's possible to query the EMP table for each department record. This

solution potentially offers more options for querying the EMP table to add more filters

or run additional queries, if adds some overhead by executing additional queries.

Conclusion

The structured query language offers great flexibility when it comes to composing

requests to a database. This allows to write complex queries to poll data from a table

or a set of tables, analyze the information stored in the database, cross-reference

SELECT DEPT.DEPTNO, ROUND(COALESCE(AVG(EMP.SAL), 0), 2),

COUNT(EMP.EMPNO)

FROM DEPT

LEFT JOIN EMP on DEPT.DEPTNO = EMP.DEPTNO

GROUP BY DEPT.DEPTNO;

SELECT DEPT.DEPTNO,

(SELECT ROUND(COALESCE(AVG(EMP.SAL), 0), 2)

FROM EMP

WHERE EMP.DEPTNO = DEPT.DEPTNO) AS AVG_SALARY,

(SELECT COUNT(*)

FROM EMP

WHERE EMP.DEPTNO = DEPT.DEPTNO) AS EMPLOYEE_COUNT

FROM DEPT;

9

af://h2-10

multiple tables based on the business needs. Besides, this flexibility allows to

optimize the queries for performance when working with large amounts of data.

However, it is important that the database specialist knows the specifics of the

database management software (DBMS) they work with, as the performance of

different commands depends on the implementation details of the specific DBMS and

server settings (Čapligins and Ermuiža, 2016; Oracle Corporation, no date b).

The choice of the database management software and the database engine not only

affects the performance of a database and the commands, but also has impact on the

sustainability of the implemented database solution (Miranskyy et al., 2018).

References and Bibliography

Brookshear, J.G. and Brylow, D. (2020) Computer science: an overview. 13th edition,

global edition. NY, NY: Pearson.

Čapligins, O. and Ermuiža, A. (2016) ‘MySQL database management system forks

comparison and usage’. ResearchGate. Available at:

https://www.researchgate.net/profile/Andrejs-

Ermuiza/publication/304394705_MySQL_Database_Management_System_Forks_Co

mparison_and_Usage/links/576e1eb308ae10de6395d848/MySQL-Database-

Management-System-Forks-Comparison-and-Usage.pdf (Accessed: 12 January

2025).

Miranskyy, A.V. et al. (2018) ‘Database engines: Evolution of greenness’, Journal of

Software: Evolution and Process, 30(4), p. e1915. Available at:

https://doi.org/10.1002/smr.1915.

Oracle Corporation (no date a) MySQL :: MySQL 9.1 Reference Manual :: 14.25

Precision Math. Available at: https://dev.mysql.com/doc/refman/9.1/en/precision-

math.html (Accessed: 12 January 2025).

Oracle Corporation (no date b) MySQL :: MySQL 9.1 Reference Manual :: 10.1

Optimization Overview. Available at:

10

https://www.researchgate.net/profile/Andrejs-Ermuiza/publication/304394705_MySQL_Database_Management_System_Forks_Comparison_and_Usage/links/576e1eb308ae10de6395d848/MySQL-Database-Management-System-Forks-Comparison-and-Usage.pdf
https://www.researchgate.net/profile/Andrejs-Ermuiza/publication/304394705_MySQL_Database_Management_System_Forks_Comparison_and_Usage/links/576e1eb308ae10de6395d848/MySQL-Database-Management-System-Forks-Comparison-and-Usage.pdf
https://www.researchgate.net/profile/Andrejs-Ermuiza/publication/304394705_MySQL_Database_Management_System_Forks_Comparison_and_Usage/links/576e1eb308ae10de6395d848/MySQL-Database-Management-System-Forks-Comparison-and-Usage.pdf
https://www.researchgate.net/profile/Andrejs-Ermuiza/publication/304394705_MySQL_Database_Management_System_Forks_Comparison_and_Usage/links/576e1eb308ae10de6395d848/MySQL-Database-Management-System-Forks-Comparison-and-Usage.pdf
https://doi.org/10.1002/smr.1915
https://dev.mysql.com/doc/refman/9.1/en/precision-math.html
https://dev.mysql.com/doc/refman/9.1/en/precision-math.html
af://h2-11

https://dev.mysql.com/doc/refman/9.1/en/optimize-overview.html (Accessed: 12

January 2025).

Oracle Corporation (no date c) MySQL :: MySQL 9.1 Reference Manual :: 15 SQL

Statements. Available at: https://dev.mysql.com/doc/refman/9.1/en/sql-

statements.html (Accessed: 12 January 2025).

University of Essex Online (2024) LCS_PCOM7E October 2024: Prerequisite Activity

for Assignment 1 Part 3 of 3 | UoEO. Available at: https://www.my-

course.co.uk/mod/page/view.php?id=1077883 (Accessed: 12 January 2025).

11

https://dev.mysql.com/doc/refman/9.1/en/optimize-overview.html
https://dev.mysql.com/doc/refman/9.1/en/sql-statements.html
https://dev.mysql.com/doc/refman/9.1/en/sql-statements.html
https://www.my-course.co.uk/mod/page/view.php?id=1077883
https://www.my-course.co.uk/mod/page/view.php?id=1077883

	Database Query Assignment
	Introduction
	Database setup
	Create tables

	Query the database
	1. List employees based on their salary
	2. Count employees based on criteria
	3. Display details for employees who match selection criteria
	4. Find departments without employees
	5. Display aggregate department data

	Conclusion
	References and Bibliography

