
System Implementation of a Waiter Robot

Project Overview

This project implements a restaurant simulation where humanoid robots act as

waiters. It applies object-oriented principles like encapsulation, inheritance, and

polymorphism to model robot interactions with the kitchen and tables. Robots process

various requests to deliver a seamless dining experience.

Running the application

To execute the restaurant simulation:

System Architecture

1. Ensure Python 3 is installed (the solution was tested on Python 3.12).

2. Navigate to the project root.

3. Run the sample script:

python restaurant_sample.py

The script demonstrates:

Setting up the system: orchestrator, tables, robots, and menu

Placing and processing food orders

Serving food and handling payments

Printing formatted bills

1

af://h1-0
af://h2-1
af://h2-2
af://h2-3

Req u e s t

t a b l e I d : I n t

P a y m e n t R e q u e s t
S e r v e R e q u e s t

i t e m s : L i s t < O r d e r I t e m >

O r d e r R e q u e s t

i t e m s : L i s t < O r d e r I t e m >

O r d e r I t e m

p o s i t i o n I d : I n t
q u a n t i t y : I n t

P o s i t i o n

i d : I n t
n a m e : S t r i n g
p r i c e : D e c i m a l

M e n u

p o s i t i o n s : L i s t < P o s i t i o n >

ge tPos i t i onBy Id (i d : I n t) : Pos i t i on

B i l l

i d : I n t
t a b l e I d : I n t
i t e m s : L i s t < O r d e r I t e m >
p a i d : B o o l e a n

t o t a l (m e n u : M e n u) : D e c i m a l
f o r m a t B i l l (m e n u : M e n u) : S t r i n g

Ta b l e

i d : I n t
c u r r e n t B i l l I d : I n t
o r c h e s t r a t o r : O r c h e s t r a t o r S e r v i c e

c rea teB i l l () : B i l l
ge t O rCrea te B i l l () : B i l l
p l a c e O r d e r (i t e m s : L i s t < O r d e r I t e m >) : v o i d
r e q u e s t P a y m e n t () : B i l l

Wa i t e r R o b o t

i d : I n t
s t a t u s : R o b o t S t a t u s

p o s t R e q u e s t (r e q u e s t : R e q u e s t) : v o i d
h a n d l e R e q u e s t () : v o i d

R o b o t S t a t u s

IDLE
BUSY
OFFLINE

O r c h e s t r a t o r S e r v i c e

r e q u e s t Q u e u e : Q u e u e < R e q u e s t >
r o b o t s : L i s t < Wa i t e r R o b o t >
t a b l e s : L i s t < Ta b l e >
b i l l s : L i s t < B i l l >
k i t c h e n : K i t c h e n

a c c e p t R e q u e s t (r e q u e s t : R e q u e s t) : v o i d
d i s p a t c h () : v o i d

K i t c h e n

o r d e r s I n P r o g r e s s : Q u e u e < O r d e r R e q u e s t >

q u e u e O r d e r (o r d e r : O r d e r R e q u e s t) : v o i d
h a n d l e O r d e r () : v o i d

1 *

1

*

1

*

1

*

1

1

1

11

*

1

0 . .1

1

*

*

1

1

*

1 1

Figure 1. Updated class diagram

Orchestrator Service (restaurant/orchestrator.py)

2

af://h3-4

The central controller that manages all interactions between components: dispatches

requests, manages resources, coordinates the overall flow of operations, and

contains references to other system components.

In a real-life setting the queue would be processed asynchronously and the tasks

would be assigned as soon as possible, but in this implementation dispatch

method must be called to process new requests. This was done to better visualize the

data flow.

Tables (restaurant/table.py)

Tables allow customers to place orders and request payments. They track bills and

interact with the orchestrator.

Waiter Robots (restaurant/robot/waiter_robot.py)

Robots serve food and process payments. They transition through different states (as

defined in restaurant/robot/robot_status.py) and handle assigned requests

via the handle_request method.

Kitchen (restaurant/kitchen.py)

Processes food orders and generates serve requests. Queue processing is triggered

manually to simulate real-time cooking.

Menu (restaurant/menu/menu.py)

Stores available items and prices. Orders refer to items as described in

restaurant/menu/order_item.py and restaurant/menu/position.py .

Requests (restaurant/requests/request.py)

All requests inherit from Request (restaurant/requests/request.py). Types

include OrderRequest , ServeRequest , and PaymentRequest . The orchestrator

uses these to route requests to the right component.

Bills (restaurant/bill.py)

Track ordered items, calculate totals, and manage payment statuses.

3

af://h3-5
af://h3-6
af://h3-7
af://h3-8
af://h3-9
af://h3-10

Testing Approach

The application employs a comprehensive unit testing strategy using Python’s

unittest framework that facilitates test automation and provides a variety of

methods to ensure integrity of a software solution (Python Software Foundation,

2025c). Each class has a dedicated test suite that targets the behaviors of class

objects including boundary testing with valid, edge-case, and invalid inputs to ensure

robust error handling. Tests also verify that objects transition correctly between the

possible states. While the focus is primarily on unit testing, some integration points

between closely related components are also verified to ensure proper interaction.

This approach ensures high code quality, facilitates refactoring, and provides

documentation of expected component behavior.

The tests can be run with the following command:

Development Process and Reflection

The initial design provided a solid foundation, but during the implementation of the

request processing logic it became apparent that a few additional helper methods are

necessary, such as bill management in Table class. The application of the queues

has proven reasonable allowing to process the requests in the order of their creation

(Brookshear and Brylow, 2020, p. 441). The changes are reflected in the updated

diagram on the Figure 1.

To simplify the logic for the simulation and to make the queue processing more

transparent in the solution, the components that process and store the requests

implement separate methods for accepting the requests and completing or routing

them. However it’s worth mentioning that in a real-life setting the requests would be

processed asynchronously and independently by the different system components.

During the development process, the monetary values variables were updated to use

Decimal instead of double to eliminate rounding errors typical for the floating-point

python -m unittest discover -s test

4

af://h2-11
af://h2-12

arithmetic (Python Software Foundation, 2025a, 2025b).

The application of the different testing approaches has proven to be highly beneficial

for the development process and allowed for easily modifying and improving the

components’ behavior and performance without affecting their traits.

References

Atlassian (no date) The different types of testing in software, Atlassian. Available at:

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-

testing (Accessed: 7 April 2025).

Brookshear, J.G. and Brylow, D. (2020) Computer science: an overview. 13th edition,

global edition. NY, NY: Pearson.

Python Software Foundation (2025a) decimal — Decimal fixed-point and floating-

point arithmetic, Python documentation. Available at:

https://docs.python.org/3.13/library/decimal.html (Accessed: 7 April 2025).

Python Software Foundation (2025b) Floating-Point Arithmetic: Issues and

Limitations, Python documentation. Available at:

https://docs.python.org/3.13/tutorial/floatingpoint.html (Accessed: 7 April 2025).

Python Software Foundation (2025c) unittest — Unit testing framework, Python

documentation. Available at: https://docs.python.org/3.13/library/unittest.html

(Accessed: 7 April 2025).

5

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://docs.python.org/3.13/library/decimal.html
https://docs.python.org/3.13/tutorial/floatingpoint.html
https://docs.python.org/3.13/library/unittest.html
af://h2-13

	System Implementation of a Waiter Robot
	Project Overview
	Running the application
	System Architecture
	Orchestrator Service (restaurant/orchestrator.py)
	Tables (restaurant/table.py)
	Waiter Robots (restaurant/robot/waiter_robot.py)
	Kitchen (restaurant/kitchen.py)
	Menu (restaurant/menu/menu.py)
	Requests (restaurant/requests/request.py)
	Bills (restaurant/bill.py)

	Testing Approach
	Development Process and Reflection
	References

