
Team Design Proposal
Unit 6

June 09, 2025

Contents
1. Introduction ... 3
2. Security Vulnerabilities ... 4

2.1. Brute force attack .. 4
2.1.1. Vulnerable mode ... 4
2.1.2. Secure mode ... 4

2.2. Denial of Service ... 4
2.2.1. Vulnerable mode ... 4
2.2.2. Secure mode ... 4

2.3. API injection .. 5
2.3.1. Vulnerable mode ... 5
2.3.2. Secure mode ... 5

3. UML ... 6
3.1. Class Diagram .. 6
3.2. Misuse Diagrams ... 7

4. API ... 9
5. Testing .. 10
6. References .. 11
Index of Figures .. 12

1. Introduction
The domain that we have chosen to design our system for is a school grading system. We felt this was a
suitable choice given this is an environment we are all familiar with. Furthermore, there are a minimal
set of very well defined roles. It was thought that this would therefore make the process of deciding what
access rights each user has more simple.

3

2. Security Vulnerabilities
In the unsecure mode of operation, the system shall be vulnerable to common mehods of attack such as
a brute force or Denial of Service attack on the local network system and API injection attack.

2.1. Brute force attack
Defined by Curtin (2005) as “simply try[ing] every single possible combination until finding the one that
works”. This attack is often used against security mechanisms such as passwords and combination locks,
where the set of possible solutions is finite and known. An attacker merely has to exhaust all permutations
of the input until they happen upon the correct one.

2.1.1. Vulnerable mode

While in the insecure state, the system shall encode user passwords in plaintext. This is a common
vulnerability as listed by the Open Worldwide Application Security Project (OWASP), which can lead to
the comprimising of a system (OWASP, no date).

2.1.2. Secure mode

OWASP recommends that passwords should be hashed rather than encrypted, as hashing is a one-way
process that cannot be reversed. This prevents attackers from recovering plaintext passwords, even if they
gain access to the hashes.

In contrast, encryption is reversible and therefore not suitable. If the decryption key is compromised, all
passwords can be exposed, undermining security.

To strengthen password storage, a unique salt should be added to each password before hashing. This
ensures identical passwords yield different hashes, making attacks like precomputed hash lookups inef-
fective. (OWASP, no date).

2.2. Denial of Service
A Denial of Service (DoS) attack involves making a computer system, service or network unavailable
to intended users by flooding it with illegitimate requests. As a result users may experience slow perfor-
mance while the large volume of requests are processed (Mirkovic et al., 2004).

2.2.1. Vulnerable mode

The suggested method of transmitting user input is through a network socket, a software abstraction
representing one endpoint of a two-way communication link between networked systems (Van Winkle,
2019).

The server must handle TCP SYN packets from clients, responding with SYN/ACKs. Normally, the client
completes the handshake with a final ACK, establishing the connection. In a DoS attack, the client omits
this final ACK, leaving the connection half-open. By initiating many such connections, the attacker
consumes server resources, potentially rendering it unresponsive (Cloudflare, no date).

2.2.2. Secure mode

Secure mode expects floods from many IPs, so we enable SYN-cookies and cap each /24 subnet to 50 half-
open connections every 30 seconds, anything above that is briefly dropped.

4

2.3. API injection
API injection occurs when valid API requests include malicious input executed by the backend, potentially
compromising all system data (Ball, 2022). Systems handling personal data, especially under regulations
such as the General Data Protection Regulation (GDPR), must guard against such attacks.

2.3.1. Vulnerable mode

In this mode, inputs are not sanitised. Without sanitisation, defined by Olmsted (2024, para 4) as “cleaning
and validating user inputs”, attackers can send harmful commands via API requests to gain unauthorised
data access.

2.3.2. Secure mode

With input sanitisation enabled, all API requests are validated early, following OWASP’s Input Validation
Cheat Sheet. This blocks malicious input before it reaches core processing. However, the system must
remain functional (OWASP, no date).For example filtering that is too strict, rejecting names containing
' , would be inappropriate for a school context.

SECURITY VULNERABILITIES 5

3. UML
3.1. Class Diagram
At the core of the system is the Core module, which defines the structure of a request. This includes the
HTTP method, the target endpoint (e.g. message/send), the payload containing the necessary data and the
session identifier. Incoming requests are handled by corresponding Actions, where the execute() method
is invoked to initiate processing. This typically involves executing the logic defined in process_request()
and recording operational logs.

Each API endpoint can be associated with specialised action subtypes, such as LoginAction, SendMes-
sageAction or CreateMarkAction. These classes derive their data from the request payload, with fields
automatically populated during instantiation by the Action Factory.

The Security module includes the SecurityManager, which serves as the main interface for security-related
operations. It also incorporates the SessionManager and several utility classes. To ensure secure commu-
nication, the system could employ asymmetric encryption, whereby the public key is made accessible via
the RSAKeyManager through a GetPublicKeyAction. During request processing, the private key would
then be used to decrypt the incoming payload.

The domain-specific logic is currently straightforward, though there may be opportunities to simplify it
further given the structural similarities across its various components.

Figure 1: Class Diagram

6

3.2. Misuse Diagrams
The below diagrams describe the various actions available to both a legitimate user and a hacker. They
supplement the above descriptions of how security vulnerabilities can be exploited by an attacker.

Figure 2: DDoS Misuse Diagram

UML 7

Figure 3: Man in the Middle Misuse Diagram

Figure 4: API Injection Misuse Diagram

8 UML

4. API
The attached OpenAPI schema defines a RESTful API for a School Management System, covering users,
subjects, coursework, and grading. It uses standard HTTP methods and organizes endpoints by user roles
(admin, tutor, student) for clarity.

Security is handled via a JSON Web Token (JWT) based authentication, using a bearerAuth scheme. Clients
must include a valid token in the Authorization header, enabling role-based access (e.g., only tutors can
assign marks, only admins can create users).

Although designed to work with an external Identity Provider, the schema handles authentication inter-
nally in the interests of simplicity. This streamlines development but would typically be replaced by a
dedicated IdP in production. The result is a secure, role-aware API for managing school operations.

9

5. Testing
The testing strategy shall comprise of differing levels of testing with unit, integration and user testing
being performed. Unit testing shall be performed using Python’s unittest framework, which supports
test creation and execution. It also provides implementation for mocks, a way of allowing controlled
simulation of external dependencies to test isolated logic components (O’Reilly, chapter 12, 2024).

Integration testing will consist of tests that utilise functionality of multiple sub-systems as defined in the
class diagram. For example mocking user input to create an API request. This action would require action
from more than one unit, the result of which can then be checked against an expected result in order to
verify end-to-end functionality.

User testing will involve real users executing predefined tasks to confirm correct behavior and ensure a
smooth, intuitive user experience.

10

6. References
Ball, C. (2022) Hacking APIs, O’Reilly: No Starch Press. Available at: https://learning.oreilly.com/library/
view/hacking-apis/9781098130244/c12.xhtml (Accessed: 24 May 2025).

Cloudflare. (no date) SYN flood attack. Available at: https://www.cloudflare.com/learning/ddos/syn-flood-
ddos-attack/ (Accessed: 19 May 2025).

Mirkovic, J. et al. (2004) Internet Denial of Service: Attack and Defense Mechanisms, O’Reilly: Pear-
son. Available at: https://learning.oreilly.com/library/view/internet-denial-of/0131475738/ch02.html#ch
02 (Accessed: 21 May 2025).

Olmsted, A. (2024) Security-Driven Software Development, O’Reilly: Packt Publishing. Available at: https://
learning.oreilly.com/library/view/security-driven-software-development/9781835462836/ (Accessed: 25
May 2025).

OWASP. (no date) Password Plaintext Storage. Available at: https://owasp.org/www-community/vulnerab
ilities/Password_Plaintext_Storage (Accessed: 23 May 2025).

OWASP. (no date) Password Storage Cheat Sheet. Available at: https://cheatsheetseries.owasp.org/
cheatsheets/Password_Storage_Cheat_Sheet.html (Accessed: 21 May 2025).

Van Winkel, L. (2019) Hands-On Network Programming with C, O’Reilly: Packt Publishing. Available
at: https://learning.oreilly.com/library/view/hands-on-network-programming/9781789349863/72011b8c-
93de-48c9-a0ee-787a2f513473.xhtml (Accessed: 20 May 2025).

Westerveld, D. (2024) API Testing and Development with Postman. 2nd edn. O’Reilly: Packt Publishing.
Available at: https://learning.oreilly.com/library/view/api-testing-and/9781804617908/Text/Chapter_12.
xhtml#_idParaDest-250 (Accessed May 28 2025).

11

https://learning.oreilly.com/library/view/hacking-apis/9781098130244/c12.xhtml
https://learning.oreilly.com/library/view/hacking-apis/9781098130244/c12.xhtml
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://learning.oreilly.com/library/view/internet-denial-of/0131475738/ch02.html#ch02
https://learning.oreilly.com/library/view/internet-denial-of/0131475738/ch02.html#ch02
https://learning.oreilly.com/library/view/security-driven-software-development/9781835462836/
https://learning.oreilly.com/library/view/security-driven-software-development/9781835462836/
https://owasp.org/www-community/vulnerabilities/Password_Plaintext_Storage
https://owasp.org/www-community/vulnerabilities/Password_Plaintext_Storage
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://learning.oreilly.com/library/view/hands-on-network-programming/9781789349863/72011b8c-93de-48c9-a0ee-787a2f513473.xhtml
https://learning.oreilly.com/library/view/hands-on-network-programming/9781789349863/72011b8c-93de-48c9-a0ee-787a2f513473.xhtml
https://learning.oreilly.com/library/view/api-testing-and/9781804617908/Text/Chapter_12.xhtml#_idParaDest-250
https://learning.oreilly.com/library/view/api-testing-and/9781804617908/Text/Chapter_12.xhtml#_idParaDest-250

Index of Figures
Figure 1: Class Diagram ... 6
Figure 2: DDoS Misuse Diagram .. 7
Figure 3: Man in the Middle Misuse Diagram .. 8
Figure 4: API Injection Misuse Diagram .. 8

12

	Introduction
	Security Vulnerabilities
	Brute force attack
	Vulnerable mode
	Secure mode

	Denial of Service
	Vulnerable mode
	Secure mode

	API injection
	Vulnerable mode
	Secure mode

	UML
	Class Diagram
	Misuse Diagrams

	API
	Testing
	References
	Index of Figures

